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Abstract

An approximate algorithmic solution is derived for the elastic fields in an infinite isotropic sheet rigidly bonded with
an orthotropic, polygon-shaped patch. The approach employed here combines the equivalent inclusion method by
Eshelby, see work by Mura (Micromechanics of Defects in Solids, 1987) and the extension of Rodin’s (J. Mech. Phys.
Solids 44, 1996) algorithmic solution for a polygonal inclusion with constant eigenstrains to the case of polynomial
eigenstrains. A numerical example of an octagonal shaped patch symmetric with respect to two coordinate axes is
presented using zero- and second-ordered approximation for eigenstrains, and the results are compared with those from
finite element method. The study was motivated by the lack of analytical capabilities for analyzing and designing
bonded repairs with a general shaped patch in aging aircraft. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

When today’s aircrafts reach the end of their service lives, fatigue cracks are found to have developed
along rivet holes and other highly stressed region of the aircraft. In order to extend the life of these aircraft,
repairs have been made to arrest these cracks. The development of high-strength fibers and adhesives has
made it possible to use composite bonded repairs for these situations. This repair scheme has shown to be
very effective in arresting a crack and also eliminates stress concentrations at rivet holes created by me-
chanically fastened repairs.

Analytical method for analyzing crack patching using the inclusion analogy was first proposed by Rose
(1981) for an elliptical patch. Rose’s fundamental idea is to divide the analysis into two stages. The value
of dividing the analysis into two stages is that different simplifying assumptions are appropriate for each
stage. In stage I, the redistribution of stress in an wuncracked skin due to the presence of the patch is
determined, assuming that the skin and the patch are rigidly bonded. This assumption is appropriate in
practice because the length of the load transfer zone around the edge of the patch is usually small
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compared with the overall dimension of the patch. Stage I problem is commonly referred to as a load
attraction problem. For stage II, a problem of an infinite sandwiched plate consisting of a centered-
cracked plate adhesively bonded to an uncracked reinforcing plate is considered. This two-stage analytical
procedure provides a practical method to estimate quantities of primary interests such as the stress
concentration factors near the edge of the patch and the crack tip stress intensity factor. However, stage 1
analysis had been carried out only for certain simple shapes such as ellipses or circles. The purpose of the
present paper is to derive an approximate algorithmic close-form solution for the load attraction problem
with a general shaped patch.

The terminology ““inclusion”, which will be mentioned throughout this paper, may have been used in a
slightly different context in other papers on the bonded repair subject so that perhaps it needs a clarifi-
cation. When a finite subdomain 2 in a homogeneous material D is prescribed by an initial strain (or
eigenstrain) field and this initial strain field is zero outside Q, then Q is called an inclusion. If a subdomain
Q in a material D has elastic moduli different from those outside ©, then Q is called an inhomogeneity.
The patching problem under present consideration is therefore classified as an inhomogeneity problem.
The solution of the load attraction problem in a bonded (patched) sheet is solved by the Eshelby
equivalent inclusion method combining with the algorithmic approach proposed recently by Rodin (1996)
in his analysis of a polygonal and polyhedral inclusion under uniform eigenstrain. This approach is
preferred over other methods such as Muskhelishvili complex variable method since literature contains
numerous solutions for inclusion problems under uniform eigenstrain and these solutions can be extended
to a case of polynomial eigenstrain in a straight forward manner. In contrast, the latter method requires a
complex mapping for a non-elliptical patch and also an integration of a strain field resulting in multi-
value functions.

As mentioned earlier, the elastic fields due to inclusions in an infinitely extended media have been in-
vestigated by many authors following the pioneering work of Eshelby (1957). Since a list of references on
this subject is extensive and it can be found in Mura (1987), we will not discuss here all of those works. Only
references most relevant to the present work will be cited. Elastic fields in a polygon-shaped inclusion with
uniform eigenstrains in an infinitely extended isotropic media have been examined recently by Rodin (1996)
and Nozaki and Taya (1997). However, no work has been done to extend these approaches to a case of
polynomial eigenstrain and to apply them to the load attraction problem in a rigidly bonded sheet. On the
other hand, elastic fields due to an ellipsoidal inclusion with eigenstrain given in the form of polynomials of
coordinates have been obtained by Sendeckyj (1967) and Moschovidis (1975). Using these results, Mos-
chovidis (Moschovidis, 1975; Moschovidis and Mura, 1975) employed the equivalent inclusion method to
formulate the solution for a number of ellipsoidal inhomogeneities in an infinitely extended isotropic
material. Johnson et al. (1980a,b) used the same approach to study the stress field in cuboidal precipitates.
A similar approach will be taken here, but for a general shaped inhomogeneity. It should be emphasized
that only an approximate solution is obtained for the current bonded problem since the condition for
equivalency, as shown later in Section 2, can only be satisfied approximately using the first few terms of
Taylor’s series.

2. Equivalent inclusion method

In the equivalent inclusion method, the stress and strain fields induced by an inhomogeneity occupied
region Q will be the same as those induced by the strain field ¢, in the same region of a homogeneous
material C?/'kl when ¢; is selected appropriately as shown in Fig. 1. The second problem in Fig. 1 is an
inclusion problem. The equivalency condition between the two problems requires that

1 _ I ) N | §
& = &> Oy = Oy (1)
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Fig. 1. An illustration of the equivalent inclusion method. (I) An inhomogeneity problem and (II) an inclusion problem with eigen-
strains ;.
i

at every point in subregion Q. Since the second problem is an inclusion problem, the induced strain field in
that problem is commonly expressed in terms of ¢}; and the far field applied strain ¢.,;; as (Mura, 1987)
e = Syuey + iy (2)

i

where Sy, is called Eshelby tensor. The next two sections will be devoted to the calculation of this Eshelby
tensor for a polygon-shaped domain Q with eigenstrains given in the form of polynomials of position
coordinates. Similar to the thermal or initial strain, the resulting stress inside © for the second problem
from Hook’s law is

U},l' = C?jkl (5;;1 - Sltl)? 3)
while the corresponding stress for the first problem equals
(7?/ = Cg/kzgllw 4)

where C},, is the elastic moduli of the inhomogeneity, Cfy, is the elastic moduli of the material outside

subregion @ in problem I and also that of the homogeneous material in the second problem.
Substituting these results into Eq. (1) yields the following equation for &;:

* 0 . *x __
ACijkISklmns - Cijkg‘gk; = —ACg/k/%ok/,

mn

(5)
ACiu = Czojkl - Cz!jkl‘

It should be noted that the above equation is non-linear because Sju; is an implicit function of ;.

Eq. (5) will be solved approximately by the following procedure (Moschovidis, 1975; Moschovidis and
Mura, 1975). First, ¢;; is assumed to be the polynomials of the position coordinates with yet to be deter-
mined coefficients, i.e.,

&; = Bij + Bipxe + Byuxpx; + -+ (6)

In Eq. (6), Bij, Bijx, Biju, - - ., are constants symmetric with respect to the free indices i, j and having value
independent of the order in which the summation indices appear; i.e., By = Bjus, Biju = Bjjie. The Eshelby
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tensors for an inclusion Q with an eigenstrain equal to each term of the polynomials given in Eq. (6) are
computed using Rodin’s algorithmic approach for a polygonal inclusion. The details of these computations
will be given in Sections 3 and 4, and let us assume for now that these Eshelby tensors are already obtained
and denoted by D,y (x), Dijkim(x), and D;jm(x) for a constant, linear and quadratic eigenstrain, respec-
tively. It should be noted that these tensors in general are not constant tensors, even for the case with
uniform eigenstrains. Thus, from Egs. (1) and (2)

&; = & = Eocij + DijerBir + DijeimBrim + DijetmnBeimn + - - - (7)

1

The next two steps are to expand these tensors D into Taylor series and to substitute these results into Eq.
(5) together with Eq. (6). By setting the coefficient of each polynomial term of the resulting equation to
zero, one obtains a system of algebraic equations with unknowns B;;, B;, and Bj,.

To illustrate the above procedure, we will formulate the solution for a polygon-shaped inhomogeneity
that is symmetric with respect to two coordinate axes, in an infinitely extended isotropic media with uni-
form applied normal strains at infinity. In addition, the elastic moduli of the inhomogeneity are orthotropic
with the material principal directions parallel to the coordinate axes. The double symmetry condition of the
problem imposes that the normal component of the eigenstrains must be an even function of the coordi-
nates while the shear component is an odd function. If the eigenstrain ¢j; is approximated by a second
degree polynomial, then ¢, after taking into consideration the double symmetry condition, must presume
the following form:

&}, = B +x{Bun + X3B1,
&, = By + x1Byi1 + 3B, (8)
&1y = X1X2B1212-

Furthermore, by observing the symmetric and anti-symmetric property of the normal and shear compo-

nents of the induced strain field and by invoking the material orthotropy and isotropy, one can deduct from
Eq. (5) a following set of algebraic equations for the unknown coefficients, Bs:

AC,u11L11(0) + AC,y00L2(0) — C°

1 0? 1 0?
ACu11 =5 L1 (0) + 5 AC,00 =

0
Bii = C,0B2m = —ACu1180011 — ACu028500,

ool

——L»(0) — C2,,Biii — C 03By =0,

2 ox? 2 ox? il
1 a2 1 az 9)
ZACAO’H ™ 2L11 0) + 2AC7122 ™ szz(O) C? Bl — C B =0,
62
ACa12 6x16x2L12(0) — C)y,B1212 = 0,

where

L,p(X) = Dyp11 (X)B11 + Diypoa (X) Bz + Dyginni (X)Biint + Dapriza(X)Bii2z + Dagonn (X)Booni
+ Dypna(X)Boaoa + Dypio12(X)Bia1a, (o, f=1,2),

and the notation L,;(0) and (8°/0x7)L,s(0), etc., means that the L’s and their second derivatives are
evaluated at point (0,0), i.e., the origin of the coordinate system.

Once the coefficients Bs, thus &, are determined, the elastic fields in the inhomogeneity problem can be
obtained from the corresponding results of the equivalent inclusion problem. It remains now to derive
Eshelby tensor Ds mentioned above for a polygon-shaped inclusion with eigenstrains given in the form of
polynomials of the coordinates and the complete elastic fields of the “equivalent” inclusion problem. That

will be the subject of next Section 3.
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3. An inclusion problem with polynomial eigenstrains
3.1. Formulation

Consider an infinite, elastic, homogeneous, and isotropic media having an inclusion Q with an eigen-
strain ¢;;. The eigenstrains are so defined that they assume some functional values in £ but vanishes outside
Q. The induced strain ¢; and the resulting stress ¢;; are given by (Mura, 1987)

1

&;(x) = m { Wity — 2V®uiy — 2(1 — v)(Durgy + (pjk,ki)}v (10)
. C,: 'kl(gkl — 8;:1), inside Q,
Gij(x) - { Cijklgkla outside Q, (11)

where

'I’,-j://smx—x"dx’,
o
& ,
(1557://|X7X,|dx,
o

dx' = dx| - dx} - dx}, while a prime indicates partial differentiation. The functions s and ¢s are known as
the bi-harmonic and harmonic potentials, respectively. It should be noted that the induced strain field given
by Eq. (10) is valid for both interior and exterior points of Q.

Now, assume that the eigenstrains ¢j; are given in the form of Eq. (6). Substitution of Eq. (6) into Eq. (12)
yields

(12)

Vi =By + By + Bihyy + -+
Py = Bij¢ + Biudy + By + -+,

[ﬁ://‘x—x/’dxl7

Q
wk'“,://xk...x/’x—x/|dxl, (13)

Q

1 /

=1
Q

_ Xp© o Xy ,

¢k..,1_//|x_xf| dx..
Q

Substitution of Eq. (13) into Eq. (10) gives
&i7(X) = Dy (X)Bis + Dijgim (X)Bram + Dijictonn (X)Bretmn + -+ (14)

where
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87'[(1 - V)Dijklm---n = l//m...n,kli/ - 2V5kl¢mmnjj - (1 - V) (5il¢m“.n,k/’ + 5(//(1)»1“.;1,1{[ + 5ik¢m“.n,lj
+ 5jk¢m...n,li)a (15)

and Jy, is the Kronecker delta.

From Eq. (14), it is clear that Dy, Djjkim, and D, are the Eshelby tensors for an inclusion with ei-
genstrains given by constant, linear and quadratic functions of the coordinates, respectively. In order to
determine these tensors, one need to evaluate y, Y, ., ¢, ¢,, , and their derivatives. Recently, Rodin (1996)
has proposed a simple algorithm to compute these quantities. A brief description of that algorithm will be
presented in Section 3.2.

So far, all formulas are given for a 3-D problem. In relevance to the present load attraction problem,
these formulas must be specialized to a 2-D elasticity. Since most of these formulas are quite general, they
also apply well to the 2-D case without any change, except for the expressions given in Egs. (12) and (13).
By considering the inclusion € as an infinite cylinder with a polygon-shaped cross-section, one can obtain
formulas corresponding to Egs. (12) and (13) for a plane strain case by integrating those equations in the
third direction (Rodin, 1996; MacMillan, 1958). These new formulas will be given explicitly in Section 3.2.

3.2. Computational algorithm

As before, we restrict our presentation to the case of a polygon-shaped inclusion symmetric with re-
spect to both coordinate axes and with eigenstrain given by Eq. (8). For simplicity, all formulation
presented in this section has been derived for plane strain condition. The formulation can be easily
modified for the plane stress case as in the present load attraction problem by replacing the Young
modulus £ with E(1 +2v)/(1 + v)* and the Poisson ratio v with v/(1 + v), while keeping the shear modulus
1 unchanged.

The Rodin’s algorithm is implemented in three stages. First, the inclusion domain Q is decomposed into
a set of triangular elements (subregions) in such a way that x, the point where the solution is evaluated, is a
common vertex of all the elements (Fig. 2). Second, ¥, ¥, ,,, ¢, ¢,, , and their derivatives are calculated for
each element in its local coordinate system. Third, tensors Ds are assembled from the elemental contri-
butions after appropriate coordinate transformation from local to a common, global coordinate system.

A duplex of inclusion Q

X

Fig. 2. Two dimensional construction of duplexes used in Rodin’s algorithm. Global and two local coordinate systems for a typical
duplex are also defined in the figure.
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Using Rodin’s (1996) terminology, the triangular elements made up of domain Q are called duplexes and
they are referred to as simplexes for the case of right triangles. Since a duplex can be formed from two
simplexes and the computation for latter is more efficient than that for the former, we will derive the el-
emental Eshelby tensors for a simplex in the local coordinate system.

In Sections 1 and 2, we have referred to only one coordinate system, i.e., the global coordinate system
x with an origin at the center of Q as shown in Fig. 2. Referring to Fig. 2, let us define the element
coordinate system mentioned in the above paragraph as follows. It has the origin at x, basis vectors (n,t),
where n is a unit vector outward normal to the edge and t is the tangent vector, and the corresponding
coordinates (1, ). In these coordinates, the positions of vertices are represented by the pairs (b, ¢*) and
(b, ¢7). For a convex polygon, b is positive when x is an interior point of Q and becomes negative
otherwise.

It was shown (Rodin, 1996) that computations of the Eshelby tensors are simpler if they are carried out
in this local coordinate system. In fact, all results given in the cited reference for a simplex with uniform
eigenstrains are obtained in the local coordinate system. Since the present problem deals with polynomial
eigenstrains, computations along these lines for a simplex requires introducing a second local coordi-
nate system, i.e., y, which is parallel to the element coordinate system but with the origin at same point as
that in the global coordinate system (Fig. 2). It should be reminded that the eigenstrains given in Eq. (8)
are expressed in a form of polynomials of global coordinates. From the work of Rodin (1996), for a two-
dimensional (plane strain) simplex with one of the vertices defined by (b, ¢), ¥, ¥, ,.» ¢, ¢,, , in Eq. (13) can
be rewritten as

1 b en/b
_ (1 2 2 1 2 2 (1
v lAnA OF + ) n (1 + )z,

cn/b
n”:fz/mﬂw ) (O + ) In(r? + )L,

(16)

b cn/b

—/ dn/ In (* + £)d¢,
0 0
cn/h
m no J/r (177”/[ lll (7] 4_ g ) C
where
x1 = (1 +n)cost — (y» + {)sin0,

(17)

Xy = (y1 +1)sin0 + (y, + {) cos0,

and y, and 0 are independent of #, {. The logarithmic terms appear in Eq. (16) as a result of integration of
Eq. (13) in the third direction as mentioned in the last paragraph of Section 3.1.

For the eigenstrains given by Eq. (8), one needs to evaluate four potential pairs (¢, V), (¢, Y1),
(22, ¥2) and (¢y,,,), which correspond to the eigenstrains B;, x]Bjj11, X3Bij»> and x1x2B;;12, respectively.
However, since the Eshelby tensor for a constant eigenstrain B;; has been already derived explicitly (Rodin,
1996), only the last three potential pairs are needed to be evaluated. It can be shown, after some lengthy
algebra, that these potential pairs are given by
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—dyy(y, b, c) = (7 c0s?0 + y7sin*0 — 21y cosOsin0) ) + I3 cos0 + I3 sin*0 + (2y; cos*0
— 2y,c080sin0)1} 4 (2y,5in”0 — 2y, cosOsin0)1) — 2cosOsin 01,
—2y1,(y,b,¢) = (yFcos?0 + y2sin*0 — 2y yrcosOsin0) (I3 + 19) + (I3 + I3) cos*0 + (I3 + I3) sin®0
+ (291 08?0 — 2y, c0s0sin0) (I + I7) + (2y2sin°0 — 2y, cos Osin0) (17 + I7)
—2cosOsin0(1; + 1),
—dx(y,b,c) = (37sin’0 + y3 cos?0 + 2y1yr cosOsin0) ) + I3 sin’0 + 19 cos*0 + (2y; sin’0
+ 2y, cos0sin )1y + (2, cos*6 + 2y cosOsin0)1}) + 2 cosOsin 01,
—2055(y, b, c) = (y7sin’0 + 33 cos?0 + 2y yrcosOsin0) (I3 + I9) + (I3 + I3) sin’0 + (I + I3) cos*0
+ (2y15in*0 + 2y, cos0sin 0) (I} + I3) + (2y,cos20 + 2y, cos Osin 0) (17 + 17)
+2cosOsin0(1; +1I7), (18)

—p13(y,b,¢) = [y cosOsin0 — y2 cosOsin0 + yyy»(cos?0 — sin*0)] I3 + I cosOsin 0 — I3 cos Osin 0
+ [2y1 cosOsin 0 + ys(cos0 — sin’0)] Iy — [2y»cosOsin0 — yi(cos’0 — sin’0)]1}
+ (cos?0 — sin*0)I!,
Y15y, b, ¢) = [y7cosOsind — y3 cosOsin0 + yiyy(cos’0 — sin’0)| (I +19) + (I3 + 1) cosOsin0
— (I + 13) cosOsin 0 + [2y; cosOsin 0 + y»(cos?0 — sin’0)] (I +I3) — [2y»cosOsin 0
— y1(cos?0 — sin’0)] (17 +19) + (cos?0 — sin*0) (I +1}),

where

b pen/b
o= [ [ wen@ ) azan (19)

The integral 77(b,c) is straightforward to evaluate; however, its explicit form is omitted from here as it can
be found in Gradshteyn and Ryzhik (1965).

To obtain the Eshelby tensors Ds in global coordinate system, the potentials must be differentiated with
respect to x as prescribed in Eq. (15). However, as mentioned in the beginning of this section, it is more
convenient to obtain these tensors in the local coordinate system y. By denoting the Eshelby tensors Ds in
the local coordinate system as Ds, Ds can be obtained in a straight forward manner from Eq. (15) by
differentiating the potentials appropriately with respect to y while observing that (Rodin, 1996):

b = b(x),

¢ = c(x),
0b 0c
v
ob Oc
o

and therefore,
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d of of

~ ,b,C — A.. AL
g Y
0y y:e 0y, Oc’

Even though the above task is straight forward, however, it involves extremely laborious calculation. One
therefore should rely on symbolic computations to carry out that task. In fact, all explicit expressions for Ds
in the present work have been derived with the aid of Mathematica (Wolfram, 1991). In contrast to the case
of a constant eigenstrain, the expressions of Ds for quadratic eigenstrains are too lengthy to be included
here due to space limitation.

So far we have outlined only the algorithm to compute Eshelby tensors D(y) and D(x) but not the second
derivative of D(x)s with respect to x as required in Eq. (9) in Section 2. Two different methods have been
considered in the present work to evaluate the second derivatives of D(x)s. The first method involves nu-
merical differentiation of D(x)s using central-difference scheme with error of order 4* where # is the spacing
between grid points (James et al., 1977). In this method, D(x)s must be computed at a number of points in a
rectangular grid surrounding the point of interest. The second method is to use Mathematica (Wolfram,
1991) to derive 0D/dys and d°D/0y’s analytically and then to transform these derivatives into 8°D/0x>s
through appropriate coordinate transformation. It turns out that both methods yield almost identical re-
sults for all patch geometries considered. However, the implementation of the former method is much
simpler.

Stresses near the vertex of Q are of practical importance in design and analysis of bonded repairs and
therefore needed to be addressed. As pointed out by Rodin (1996), the stress field near the vertex of Q under
constant eigenstrain takes the following asymptotic form:

1 Y4
S~ m(Ml —Mz)Bln (;), (21)
where
o By
S=14¢ 02 ¢, B=4{ By» o, (22)
o12 By

subscripts 1 and 2 denote the edges forming the vertex; ¢ is a representative edge length; r is the distance
from the vertex; M; and M, are represented by the same matrix in the basis (n, t;) and (n,, t), respectively.
That matrix is

1 0 0 —-1+4v
M=-|0 0 -3+4v|. (23)
-1 =3 0

It can be shown that the stress field near the vertices of 2 with eigenstrains prescribed by Eq. (8) also takes
the same asymptotic form of Eq. (21), except that B is now defined as:

Bi1 +x3Biini + x3B112
B =< By +xIByni +x3Bun - (24)

x1x2B1212

At this point, we are ready to devote our effort in solving the load attraction problem in bonded repairs.
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4. Application to the load attraction problem of bonded repairs

Consider an infinite isotropic skin sheet reinforced with a polygon-shaped, bonded patch and the sheet is
subjected to remote biaxial stresses similar to what is shown in Fig. 1. This problem can be analyzed by the
equivalent inclusion method mentioned in Section 2 with the following simplifying assumptions:

e All material behavior is linearly elastic.
e All sheet and patch materials are in a state of generalized plane stress.
e The patch is modeled as an integral part of the skin using inclusion analogy.

Additional effects such as the effect of bending, thermal stresses associated with the curing processing and
the variation of operating temperatures, and the effect of elastic—plastic adhesive can be superimposed on
the results obtained from this basic model as they are more conveniently treated in a separate analysis (for
example, Rose, 1988; Fredell, 1994). However, it is beyond the scope of this work to include those effects.

In Section 2, we consider a problem of an infinite isotropic sheet containing an inhomogeneity under
remote biaxial stresses. In order to apply the results obtained from that section to the present load at-
traction problem, one needs to establish the material properties of the inhomogeneity which are equivalent
to those of the patched skin. This had been done (Rose, 1988; Fredell, 1994) with key results summarized
below for plane stress condition:

A = (A% + APty /1,
Agto + APty /1,

AL = (

Vo= (V0 A%y 4 WP APt,) /(A% + AP (25)
xy xfiyto +v tp)/( yt() + ytp)a

w=

VY Xy

1ty + 1Pt,) /11,

where 4., 4,, v,, and u are the material constants which appear in the stress—strain relation for an or-
thotropic plate as follows

g1 Ax nyAy 0 €11
022 = nyAy Ay 0 &€ 5
012 0 0 u Y12 (26)
E, E,
Ag=—5 4=
1 - Vi Vi 1 - Viy Vyx

t is thickness while the superscript or subscripts I, 0 and p signify the inhomogeneity, skin and patch, re-
spectively. For an isotropic plate, E; = E, = E, v, = v, = v, and u = E/2(1 + v). It should be noted that
Eq. (25) has been derived from the following two conditions (Rose, 1981):

1, _ 0 P
ot = 0,l0 + 0ylp,

ij
(27)
le = sg =l

&
The inhomogeneity thickness # can be chosen arbitrarily; however, #; has been chosen to be the same as ¢, to
enable a direct application of the solution established in Section 2. The stress field in the load attraction
problem now can be determined by following the procedure outlined in Section 2, using constant or
quadratic eigenstrain distribution approximation. The stress field in the patched region is calculated by first
solving, for instance, Eq. (9) for the eigenstrains, then by computing the strains and stresses according to
Egs. (7) and (11), respectively, with the Eshelby tensors Ds being evaluated using the computational al-
gorithm discussed in Section 3. The stresses in the skin and in the patch inside the reinforced area then can
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be determlned from the conditions prescrlbed in Eq. (27) once O'I has been calculated since &o = ,s =

I 0 0 P
1/ (Cljk/) Thrs 0 C:/klgk/ and ‘7 =G klgkl

5. Numerical results

To assess the accuracy of the present analytical method, the stress field in a bonded patched sheet shown
in Fig. 3, is obtained and compared with results from the finite element (FE) method. The length and width
of the patch are six and four inches, respectively. The material properties and thickness of the skin and the
patch as well as the far field stresses are given below:

Skin: isotropic

E=103x10° psi, v=032, 1 = 0.063 inch.
Patch: orthotropic
E,=27x10°psi, E,=28x10%psi, v, =021, G, =08x10°psi, ¢, =0.025 inch,

Gy =0, Goey = 12500 psi.

This problem has been solved approximately by the present analytical method when eigenstrains are as-
sumed to be polynomials of degree zero (constant) and polynomials of degree two (quadratic) in the global
position coordinates. The stresses along the line y = 0 are of special interest, as they are needed for stage 11
analysis of Rose’s crack patching model. The normalized stress component g,, in the skin along the line
y = 0 is plotted and compared with FE results in Fig. 4. FE results are obtained by using FRANC2D/L
code (Swenson and James, 1997). All elements are 8-node isoparametric elements with the mesh being given
in Fig. 5. In FE analysis, the adhesive is modeled as two-dimensional linear springs. Both typical and
arbitrarily stiff adhesives are considered in the FE analysis. Typical values for shear modulus and thickness
of an adhesive are 0.1 x 10° psi and 0.005 inch, respectively. FE results for both cases of typical and stiff
adhesives are presented in Fig. 4, along with the analytical predictions. A small oscillation in FE results

T T T T F (1.25, 3+d)
450 @ / e E (1.27+d,2.98)
) ;’

Vertex 2 (1.25, 3.0)

. D(1.95,2.32)
o C(2+d, 2.25)

Vertex 1 (2.0, 2.25) 0.02<d<0.05

ol

Fig. 3. Geometry of the example problem. The coordinates of the points where the stresses are evaluated and compared are also listed.
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Fig. 4. Skin stress 6,,/0+,, underneath the patch and along the line y = 0.

near the edge of the patch is probably due to the discontinuity in skin stresses at the patch edge and also due
to severe straining in the adhesive. From Fig. 4, analytical results are in excellent agreement with those from
the finite element method. In general, analytical results based on the higher order eigenstrains are in better
agreement with FE solutions. As the adhesive becomes stiffer, the difference in stresses between the ana-
lytical and FE methods becomes smaller, as expected. For reference, the normalized stress 6,,/0.,, in the
patch near the centered region of Q is also calculated and equals 2.3 and 2.1 according to constant and
quadratic eigenstrain approximation, respectively, while the FE analysis using typical adhesive properties
yields a result of 2.13.

The stresses in the skin just outside the patched area are also of practical interest due to possible high
stress concentration or singularity there. These stresses are listed in Table 1 for various locations. The
positions of these locations are defined in Fig. 3. It is well known that the stresses at the vertices are weakly
singular and of the logarithmic nature. Stress comparisons between analytical and FE results at the vertices
are thus difficult unless a very fine mesh is employed in those local regions. To avoid this difficulty and just
for a qualitative comparison, stresses at small distance away from the vertices are reported in Table 1 (see
Fig. 3 for positions of the reported points). The discrepancy between the analytical and FE method at
points close to the vertices tends to be larger as their distance to the vertex decreases. It signifies the inability
of the FE analysis in capturing the singularity with the presently employed mesh. For points adjacent to
vertex 2, the agreement between two methods is fair for d = 0.02 (within 14%) and good for d = 0.05 (less
than 10% difference). However, a much larger discrepancy is found for stresses at point C near vertex 1. It
should be noted that the stress g,, is lower than the remote stress near vertex 1 but higher than the remote
stress near vertex 2. The amplitudes of the logarithmic singularity at vertices 1 and 2 as obtained by the
analytical method are in opposite sign as indicated in Table 2. The negative singularity near vertex 1 make
the stress field there very complicated, resulting in a rapid stress oscillation in FE results (which have not
been shown here). This may attribute in part to the observed large discrepancy. Nevertheless, since stresses
at point C near vertex 1 are not critical from the design viewpoint, no further attempt is made to resolve this
large discrepancy.
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Fig. 5. Half FE model of the analyzing bonded problem. (a) Skin mesh and (b) patch mesh.

Table 1

A comparison of the skin stress g,,/0.,, at various locations just outside the patched region by different methods*
Method Point 4 Point B Point C Point D Point £ Point F
Analytical zeroth ordered 0.662 1.303 0.690 (0.629) 0.961 1.304 (1.346) 1.415 (1.479)
Analytical second ordered 0.644 1.278 0.680 (0.612) 0.998 1.330 (1.372) 1.435 (1.500)
FE based on stiff adhesive 0.620 1.240 0.804 (0.820) 0.922 1.278 (1.324) 1.376 (1.356)
FE based on typical adhesive 0.620 1.235 0.837 (0.850) 0.929 1.261 (1.288) 1.308 (1.322)

#The exact locations of these points are given in Fig. 3. For points C, E and F, the first number indicates the skin stress when
d = 0.05, while the number given in the parenthesis is for d = 0.02.
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Table 2
Amplitudes of the logarithmic singularity at vertices 1 and 2
Method Amplitude M,, in o,, =~ M, logr Amplitude M,, in a,, = M,,logr
Vertex 1 Vertex 2 Vertex 1 Vertex 2
Analytical zeroth ordered —123.2 123.2 —851.3 851.3
Analytical second ordered —152.1 139.6 —980.6 851.3

Finally, since the solution for an elliptical patch is relatively simple to obtain and available (Rose, 1981),
it is therefore of practical interest to compare the present results with those for an elliptical patch of the
same aspect ratio A/B. This comparison would provide a basis for assessing whether or not elliptical patch
solution provides a sufficiently accurate estimate of the effect of patch aspect ratio for design purposes. The
stress in the skin underneath an elliptical patch with the same aspect ratio 4/B is uniform and also plotted
in Fig. 4 along with the FE and analytical results obtained previously for an octagonal patch. The elliptical
patch solution is about 7% higher than FE result near center region. The normalized stresses in the skin at
point 4 and B for the elliptical patch are found to be 0.55 and 1.39, respectively. The stress at point B in this
case is approximately 12% higher than the corresponding FE result.

6. Conclusions

An analytical method for analyzing a bonded repair with a polygon-shaped patch is presented. The
method is based on the equivalent inclusion method by Eshelby and employs Rodin’s computational al-
gorithm for a polygonal inclusion. The method is robust and versatile. In general, accurate results can be
obtained from the present method without recourse to the FE method, where it requires a substantial effort
of modeling or meshing. The present approach can also be applied to bonded sheets under thermal loads
during bond formation or due to variation of operating temperatures. In fact, an extension of the present
approach to address the residual thermal stress in a bonded sheet is in progress, and it will be discussed in a
forthcoming paper.
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